The Next Generation DMC satellites; UK-DMC-2 and Deimos-1

Paul Stephens
Director of Sales & Marketing
DMC International Imaging Ltd

JACIE, Washington DC 2009

The Disaster Monitoring Constellation

The Coordinator

Commercial, Government and Humanitarian

DMCii and SSTL Company Organisation

Based in UK

- Operational units
 - DMCii, Data sales and value-added data products and direct downlink services
 - SSTL-UK, Satellites and supporting infrastructure
 - SST-US, created in 2008 to develop US market

DMCii

- Established 2004, now 15 staff
- International coordinator of disaster response and constellation activities
- Commercial data services supplied world-wide

SSTL

- Established in 1985, now 300+ staff
- Over 37 satellites launched
- Currently in production 9 satellites

Applications of DMC imagery

Benefits of rapid revisit and wide area

Precision Agriculture

Flood mapping

Monitoring Europe; Complete coverage in one year

Delivered

- 38 countries
- 5.8 million km²
- Individual acquisition windows
- Individual projections
- <5% cloud
- 32 metre gsd

DMCii 32m Archive Data

Three new 20 metre class satellites can deliver multi-season World coverage

On-Line Archive Search Tools

DMC – first generation

- Constellation of 5 spacecraft launched 2002 2004
 - 32-m Ground Sampling Distance
 - Red Green and Near-infrared (Spectral ranges as Landsat 2,3,4)
 - Wide 650+km swath
 - Daily Global Revisit as constellation
 - Unique International Cooperation
 - Supporting the International Charter for Space and Major Disasters
- DMCii coordinates world-wide commercial service

Constellations against Cloud - UK weather

Multiple MODIS images May 2006

Single DMC image April 2007

Current Constellation

Multispectral

- 32 metre
- Revisit daily
- Accurate, Orthorectified imagery
- Fully Radiometrically Calibrated

Filters: Landsat equivalent

NIR 0.77 - 0.90µm ETM+4
 Red 0.63 - 0.69µm ETM+3
 Green 0.52 - 0.60µm ETM+2

Disaster Monitoring Constellation (DMC)

- Sub 100 kg satellite
- 5 year life
- Three spectral bands (equivalent to bands 2, 3 and 4 of Landsat)
- 1st generation imager (32m GSD)
 - Currently four in orbit (three in one plane and fourth is second plane)
- 2nd generation imager (22m GSD)
 - Three more DMC satellites
- Older satellites gravity gradient boom stabilised
- Next generation 3-axis stabilised

DMC Imager

 Swath 640 km across and can be thousands of kilometres long

Next Generation DMC Optical Systems

High resolution

- UK DMC2 & Deimos-1 satellites
- Nx satellite
- High Resolution Imager
 - 22m 3-band multispectral
 - 650km swath
 - X-band downlink
 - Enhanced along track imaging
 - Near Real Time Direct Downlink

- Nigeriasat-2
- VHR Imagers
 - 2.5m PAN
 - 5.0m 4-band multispectral
- HR Imager
 - 32m 4-band multispectral
- Advanced modes
- Dual X-band downlink

UK-DMC-2 & Deimos-1

DMC Imager Bands – Spectral Response Function ETM+ Band Edges Avg. In-band

Detector $5\mu m - 15,000$ pixels (improved from 1st generation 7 μm 10,000 pixels)

ETM+ Band	Band Edges 50% Relative T Lower (nm)		Avg. In-band Transmittance
2	523 ± 6	605 ± 6	0.85
3	629 ± 6	690 ± 6	0.85
4	774 ± 6	900 ± 7	0.85

wavelength

1st and 2nd generation Imager Characteristics - Modulation Transfer Function (MTF) and Signal to Noise ratio (SNR)

1st Generation (Green band)

2nd Generation (Green band)

SNR of 110-1 in green, 90-1 in red and 70-1 in the NIR. (Antarctic)

Note measurements made with non-optimal electronic gains

SNR improved to 120:1

Integration time and Electronic gain

1st generation Imagers had fixed gain and variable integration time which gave some flexibility in targeting

 2nd generation imagers have optimal settings for gain and integration time (gain will not need to be changed in normal operation, but can be). Like Landsat.

2nd generation DMC Imagers

- Improved ground sampling distance to 22m (doubles pixel density)
- Improved MTF (effective spatial resolution)
- Improved SNR (detectors, electronics and operational changes)
- Reduced striping (changed electronics and operational changes)
- Improved stability (changed wheels and absence of boom)
- Improved geometry (stability and engineering improvements)

Calibration of the DMC constellation

Image acquired July 2008 by Nigeriasat-1 over Railroad Valley Nevada

- Small satellite constellation, no on-board calibration
- Pre-launch calibration defines initial coefficients
- In orbit each sensor tends to change characteristics so a post-launch calibration is required
- Vicarious calibration using Gold standard satellite over target sites such as Railroad Valley in Nevada.
- Cross calibration of constellation over Antarctica

DMC Radiometric Calibration

Principal Scientist Dr Stephen Mackin (Surrey Space Centre, UK)

- Annual Absolute Calibration since July 2004
 - Railroad Valley, Nevada instrumented test site
 - Facilities & TOA radiance supplied by Arizona Uni., USA
- Ongoing Monthly Relative Calibration
 - 'Pacific at Night' & 'Antarctic & Greenland' images
- No significant performance change noted
- Excellent radiometry <5% error
- Cross calibration error < 0.5%
- Full documentation available

DMCii leads the CEOS WG on cross calibration

QA/QC

- Current QA/QC
 - Largely manual checks
 - Saturation
 - Striping artefacts
 - Overall quality (SNR, contrast)
 - Geometrical checks on r.m.s. errors
 - Applied to most images
- 2nd Generation QA/QC
 - Automated procedure
 - Based on modular QA/QC system proposed to ESA
 - "Controls" data quality and flags any anomaly
 - Applied to every image

DMC groundstation network

- Satellite owner stations
 - DMCii/SSTL, UK
 - CNTS, Algeria
 - TUBITAK, Turkey
 - BLMIT, China
 - NASRDA, Nigeria
 - Deimos, Spain

Distributed Network Throughput Performance for 1 satellite

- Up to 11 million km² of imagery per day
- 2 weeks to cover the equivalent of the Earth's landmass
- Example daily coverage using 13 groundstations worldwide using store and forward and Near Real Time imaging and downlink

Direct Near Real time downlink service

- All data down-linked within groundstation access
- Windowed swath can provide full image length
- Narrow and long versus wide and short option
- Designed for Bit Error Rate of 10-9
- Swaths (@ 80 Mbps)
 - 1. 300 km
 - 2. 220 km
 - 3. 660 km

Future Constellation Performance Projection

Revisit (days)

Revisit Time Analysis

European Coverage - Target regions

22m Data European Coverage – 1st Day of Imaging

22m Data European Coverage – 2nd Day of Imaging

22m Data European Coverage – 3rd Day of Imaging

22m Data European Coverage – 4th Day of Imaging

22m Data European Coverage – 5th Day of Imaging

DMC-2; Key features

- Capacity for 2 season global monitoring
 - 2 DMC-2 satellites to launch 2nd Qtr 09;
 - 3rd DMC-2 satellite launch 2010
 - Up to 11.7 million sqkm/day/satellite (total 35 million sqkm /day)
 - Augments existing 4 satellite 32m constellation
- Daily revisit in constellation
- 4-5 day revisit for single DMC satellite
- 22 m gsd vs 32m gsd = double no. of pixels/sq km
- 10 bit data
- 650km swath
- 3 bands R, G, NIR same band pass as Landsat - same filter supplier
- Well calibrated data (radiometry <5%)
- Constellation cross calibrated <0.5%
- Orthorectified to sub-pixel vs Landsat ETM+ reference

DMCii coordinates DMC Constallati

On-demand rapid imaging

- Fast responsive imaging service
 - 2.8 and 4 metre panchromatic
 - 5.6 metre multispectral
 - 32 metre multispectral

New sensors

- 22 metre multispectral (2009)
- 2.5 metre pan/5 m multispectral (2010)

Country mapping

Multi-season coverage

Precision Agriculture

Flexible, short imaging windows to cover large or small AoIs

Forest mapping

Large area change detection and classification

Direct downlink near real-time imaging

22 metre multispectral (2009)

On-line Archive access

www.dmcii.com

Questions?